
2008-10-08

Shawn Kwang
1

Comparison between SecVtx and
TStnSVF

Shawn Kwang
Mel Shochet

University of Chicago

2008-10-08

Shawn Kwang
2

Introduction

The Motivation for this algorithm

SecVtx in a nutshell

Comparison between Stntuple Secondary Vertex Finder (TStnSVF) algorithm and
SecVtx

Tagging match or mismatch

Histograms showing the differences

2008-10-08

Shawn Kwang
3

Motivation

Currently the only way to run SecVtx (that I know of) uses CDF Production as input.

Most of us use Ntuples and not the raw Production as the primary method of
performing analyses.

It takes too long to run over a large number of production data on tape.

Most of the time this is sufficient
Most analyses use high-pt b-tagging as a tool or variable to select events.
The top group for example uses SecVtx to tag jets as coming from a b-quark or not.

My analysis in brief:

We are looking for events with a long-lived (ctau~1cm) objects decaying into two
quarks.

H0->a0,a0->bbbar, bbbar is the model we are using for our signal.

Higgs is SM higgs.
The a0 represents a heavy pseudo-scalar with a long lifetime but is not
directly detected.

However SecVtx was not designed to look for highly displaced vertexes.

SecVtx as a maximum d0 cut on tracks it selects for vertexing: d0<0.15 cm.

This has the effect of eliminating most of our signal. (Diagram on next page)

2008-10-08

Shawn Kwang
4

Motivation

Top diagram is the signal, bottom diagram is a typical dijet bbbar event.

Primary vertex is the gray X incribed in a circle.

S is the “a0” (the heavy pseudo-scalar).

A d0 cut on a track (in green) would remove tracks from any signal.

2008-10-08

Shawn Kwang
5

Motivation, Cont.

It is very time consuming to re-ntuple Stntuple.

Thus reprocessing CDF Production data is not feasible My estimate was that it would
take nearly 2 years to reprocess the datasets that I need for my analysis.

At minimum we need the ZBB trigger path, the single-tower 5/10 trigger path,
and a number of relevant QCD bb, QCD dijet, etc. Monte Carlo.

Analyzing Stntuples would be much faster, allow for quicker “turnaround,” and
consume less disk space.

Ntuple processing is much faster because there are fewer algorithms being run.

Any bugs in the code would not result in another mulit-year reprocessing effort.

There is no intermediate step where custom Stntuples are created and need to be
stored somewhere.

Stntuple has a front end to CTVMFT (TCtvmft.hh & .cc) which allow users to vertex
tracks.

It is just a question of writing an algorithm to reproduce what SecVtx does.

2008-10-08

Shawn Kwang
6

SecVtx overview

The SecVtx algorithm in a nutshell:

SecVtx finds a primary vertex in the event.

It uses the best ZVertex vertex as the “seed” vertex.

It uses the PrimVtx Finder algorithm to find a vertex using said seed vertex,
constraining the result to the beamline.

Next it selects tracks for vertexing.

There are numerous track cuts: z0, d0, z0 Significance, d0 Significance, silicon
hits, etc.

Tracks are flagged as pass1 or pass2, the latter having more stringent
requirements, but is a subset of the former.

Vertexing is performed using two strategies: pass1 and pass2

Seed vertexes are formed using each pair of pass1 tracks.

Tracks are added to the vertex based on the d0 Significance of the additional
track and the seed vertex location. At least three tracks in total must be used
before a vertex is declared.

If no pass1 vertex is found, pass2 tracks are vertexed together.

Two tracks minimum are required for pass2 vertexing

Regardless the vertex is then pruned of tracks that contribute a chi-squared deemed
too high, the quantity depending on whether the algorithm is using the loose, tight, or
ultratight cuts.

The vertex decay length (L2d Significance) is cut on, among other variables.

Vertices are checked not to be from a Kshort or Lambda, and not in the material of the
detector.

2008-10-08

Shawn Kwang
7

Differences Between Algorithms

Stntuple does not contain 100% of the information that Production has, and thus my
algorithm and SecVtx will have differences.

Si databases are not available (or at least not readily available) and thus some
track quality cuts cannot be reproduced.

However, these wind up being second-order effects.

In addition, my algorithm does not recalculate the primary vertex location.

Instead it mimics SecVtx by asking the ZVertex algorithm for the best class 12
vertex, and finding the closest PrimeVertex Finder vertex from this “seed” vertex.

Functionally, this has the result of asking for the best vertex class 12 in the
PrimeVertex Finder block since the two almost always find the same vertex.

2008-10-08

Shawn Kwang
8

Comparison

I ran over one fileset of ezbbbj data, 299,167 events. This ZBB data has a large
number of b-quarks and thus has good statistics for my test.

Both tagging algorithms were run with the same tight-level cuts.

Matched tags are jets where both taggers find a +/-1 tag. Missing is where my
algorithm misses a tag that SecVtx finds. Extra is the opposite.

Missing tags can be investigated futher by looking at events where there are multiple
primary vertices.

Events with multiple vertices, where I get the wrong vertex, will have few or no
pass1/2 tracks since the z0/d0 will be calculated from the wrong vertex.

The above table shows that the missing tags are not from events where TStnSVF does
not find the correct primary vertex.

However, the overall match rate is very good (90%).

Status Number of Jets Percentage(%) of Total
Missing Tags 8324 5.06
Matched Tags 149174 90.7
Extra Tags 6964 4.23

Status Number of Jets Percentage(%) of Total
multiple class12 primary vertices, 0 pass1/2 tracks 81 0.97
multiple class12 primary vertices, 1 pass1/2 tracks 213 2.56
less than 2 pass1/2 tracks, 1 class12 primary vertex 114 1.37
all other jets 7916 95.1

2008-10-08

Shawn Kwang
9

Comparison

For jets were the algorithms matched, I plot some variables to show agreement.

L2d, L2d Significance, Vertex Mass,

I also plotted 1-(TStnSVF)/(SecVtx) to look at the differences between the two
algorithms.

Red - TStnSVF

Black – SecVtx

“CDV” was the working name for the algorithm in development.

2008-10-08

Shawn Kwang
10

Comparison

CDV was the working name for the algorithm.

Red TStnSVF
Black SecVtx

Hole is caused
by the SL2d cut.

Kinematic limit

Red TStnSVF
Black SecVtx

2008-10-08

Shawn Kwang
11

Comparison

CDV was the working name for the algorithm.

Red TStnSVF
Black SecVtx

Red TStnSVF
Black SecVtx

2008-10-08

Shawn Kwang
12

Comparison

CDV was the working name for the algorithm.

Red TStnSVF
Black SecVtx

Red TStnSVF
Black SecVtx

2008-10-08

Shawn Kwang
13

Conclusions

My algorithm compares very well to SecVtx, with a high efficiency of matched tags
and with only small differences in the essential variables.

However, I want to stress that this is not a replacement or a duplication for SecVtx,
but is in effect a stand-along tagger.

Next Up: scale factors and mistag matrix

2008-10-08

Shawn Kwang
14

Comparisons

Backup Slide
CDV was the working name for the algorithm.

Red TStnSVF
Black SecVtx

	Title Page
	Introduction
	Motivation
	Diagram
	Motivation2
	SecVtx
	Differences
	Comparison1
	Comparison2
	Comparison3
	Comparison4
	Comparison5
	Conclusions
	Backup1

